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Abstract
In the field of data processing and IoT communication it is possible to develop more robust solutions by combining quantum
algorithms with metaheuristics. Said solutions can be applied in the industry and be measured using metrics associated with
complexity, efficiency, processing, and accuracy. An extensive bibliographical review is carried out to determine which is
the most efficient and effective hybrid algorithm that can be applied to a real experimental case, which aims to improve
communication to reduce occupational risks. Criteria, metrics, and experimental results were obtained, in which it is shown
that the quantum genetic algorithm is better than the genetic algorithm. A detailed discussion on the objective function, the
convergence to the global optimum, and the need to improve the obtained solutions is given. The conclusions raise new aspects
that need investigation.
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Introduction

Wireless sensor networks (WSN), which correspond to
sensing nodes connected to each other and deployed for per-
forming a task, are among the solutions offered for systems
being capable of quickly and reliably transmitting informa-
tion from the edge of a network to the monitoring/control
center [1]. The sensor data are shared with each other and
used as input to a distributed estimation system for extract-
ing the relevant information.

For the information used for decision-making in the min-
ing industry to be effective, which works under extreme
conditions in the operations, it is necessary to perform a fault
diagnosis to avoid errors in the processing and output of data
from the system [2].

On the other hand, Networks having a LongRange (LoRa)
communication protocol, managed by a local server in the
field or by an online cloud server over the internet [3],
are capable of offering safe solution without a substantial
increase in the energy consumption and using a wireless
frequency spectrum without paying a license fee [4]. The
network layer for LoRa may vary depending on the kind
of topology with which the communications network is
built. Long Range Wide Area Network (LoRaWAN) and
Long Range Mesh network (LoRa Mesh) are some common
topologies [5, 6].

The features of LoRa make it a relevant technology for
use in Internet of Things (IoT) applications to exchange
information at an acceptable speed with the cloud, for
uploading and downloading data. IoT allows systems to
be remotely detected and controlled, providing a greater
integration between the physical world and computer-based
systems, which in the long term provides greater efficiency,
accuracy, and economic benefits. However, IoT has some
limitations since the information is not encrypted, lacks secu-
rity, and shows a low data transfer rate and a high latency time
[7].

If the network is vulnerable, it can lead to cyber-attacks in
which communication systems are corrupted and false infor-
mation can be transmitted that changes the real data [8].

Inwireless communication networks of smart industries in
the primary sector, quantum-inspired optimization is increas-
ingly used for solving complex problems. Quantum-inspired
optimization is based on quantum mechanics and comprises
the analysis, processing, and transmission of data in real-time
[9, 10]. Quantum-inspired optimization is a concept of quan-
tum computing and has the qubit as the minimal unit and the
superposition of states (for example, an electron exists in all
its possible states at the same time and simultaneously) [10].
The quantum provides a greater availability, scalability, and
operativity to the balancing of the data loading in the cloud
of the computing network working with IoT [11].

By means of quantum computing it is possible to solve
problems that can not be solved using classical computing.
It also allows the combination of quantum algorithms with
databases and with more efficient querying algorithms for
large amounts of data [12, 13]. Quantum systems are based
on the postulates of quantummechanics related to the Hilbert
space, in whichmultiple target statesmay be superpositioned
and more rapidly analyzed, since there is a probability vector
showing the probability distribution among multiple states
and the evolution of the transitionmatrix between states [12].

Quantum Genetic Algorithms (QGA) have been used to
solve complex optimization problems in engineering, due to
their great capacity for global computing in a shorter execu-
tion time, due to the search for their implicit parallel, and due
to the smaller size of the population [14].

Quantum systems have advantages in the industry since
they can minimize energy costs due to lower network traf-
fic, improve performance with less delay latency, reduce the
risks of failures in the information security field, and allow
distributed use and analysis of IoT data in offline or lim-
ited connectivity environments [15]. It is possible to use the
concepts of eigenvectors and eigenvalues of a Hilbert space
together with an information system with multi-agents to
improve decision-making, wherein robustness helps to cap-
ture a large amount of data in an environment that operates
with disturbances from different sources with a dynamic and
evolving environment [16].

Motivation

Underground mining is an important productive sector in
Chile, in which productive activities are carried out daily
in tunnels that require Ventilation on Demand (VoD) with
sensors and actuators. These devices transmit data through
the rocks, which usually generates losses in communication
due to frequent cuts of optical fiber and the shortcomings that
wireless systems present due to the lack of robustness of the
configuration [17]. The loss of connectivity inmining tunnels
is risky since, for example, forces workers to evacuate so that
they do not get intoxicated by gases. It can also cause fatal
accidents, silicosis, etc.

If communications fail and the current legal regulations
related to the protection of life, physical integrity of people,
facilities and infrastructure inwhich operational activities are
carried out are not compliedwith, sanctions are applied to the
mining company that generate economic costs in production.
[18].

As a solution, it is necessary to find communication
methods that are more secure and capable of transmitting
information in a ventilation system inwhich data are captured
with sensors, optimized with a hybrid quantum algorithm,
monitored and controlled with a more robust communication
support. If mining has resilient networks that can withstand
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failures and attacks, decisions can be made in real time to
prevent risks and accidents in the workplace. It is required to
look for technologies that improve communication and algo-
rithms that provide advantages due to their accuracy, speed,
effectiveness, and efficiency.

To determine which algorithm is more robust for a tunnel
in underground mining, in the present work a bibliographic
review of the methods, algorithms, and metrics is exposed
in the next section. A communication method best matching
the requirements of the underground mining environment is
selected.With the selectedmethod, in the subsequent section,
an experimental case will be developed followed by which
experimental results of the quantum genetic algorithm are
given. Key aspects will be discussed next. Conclusions and
future lines of research will be given in the final section.

Scope

The research is focused on determining a quantum algorithm
that can be used experimentally to communicate a VoD sys-
tem inside the tunnel. The work includes the design of the
ventilation system with sensors and the optimisation of the
quantum genetic algorithm (see “Conceptual design” in steps
(1) and (2). It should be noted that future researchwill address
the computer and software development that builds a moni-
toring and control system (see “Conceptual design” in step
(3).

Literature review

To know in which areas quantum algorithms are applied and
what are the parameters that could build metrics that can
be used in communications with IoT, the literature review
was performed on October 3, 2022, using the keywords
‘quantum’ AND ‘optimization’ AND ‘IOT’.
Among the 54 results found, the sample presented in Table 1
was selected due to the close relation with the experimental
case as developed in “Experiment”.

Most repeated features in the quantum algorithms shown
in Table 1 are classified in Table 2. The results show that in
the Telecommunications field, most of the publications are
related to data transmission networks and quantum heuristic
algorithms.

A search with the Scripts in the Main Collection of Web
of Science: TS=(quantum AND IoT AND
communication) was performed on August 11, 2022,
2022, to determine which technologies have been studied in
the area of communications with IoT. The results obtained
in the in Table 3 show that the compatibility of the different
technologies with the algorithms needs to be further studied
and that, in general, IoT systems are considered as means to
optimize resources.

Table 4 compares which metaheuristic method with and
without quantum ismore efficient.A searchwas carried out in
the Web of Science, IEEE, and Scopus databases on October
20, 2022, with the keywords ‘Quantum Algorithms’
AND ‘Metaheuristic Algorithm’. Results were
obtained for Metaheuristic Algorithms (10,463 on the Web
of Science, 5257 on IEEE, and 19,049 on Scopus), and for
QuantumAlgorithms (27,139 on theWeb of Science, 38,736
on Scopus, and 10,483 on IEEE).

The obtained results in Table 1 were used to create
Table 5, in which the algorithms were classified according to
the following criteria: complexity (efficiency), effectiveness,
processing, and accuracy. It was observed that the algo-
rithm that presented the greatest number of attributes is the
quantum bee colony with 21.4%, followed by the quantum
firefly colony algorithm with 19.6%. In third place appeared
the quantum genetics and the firefly colony algorithm with
17.9%. It should be noted that the choice of the algorithm
also depends on the field of the optimization problem being
studied, as can be seen in Table 1.

As explained in “Experiment”, the experiment was per-
formed with the quantum genetic algorithm since it included
the following criteria: data processing, mathematical model-
ing, and object detection.

Materials andmethods

Basic representations

Unlike classical computing, quantum computing uses super-
position and entanglement, in which the quantum states of
two or more objects are to be described by a single state
involving all objects in the system even when the objects are
spatially separated; since the electron may be in any of the
infinitely many intermediate quantum states between clas-
sical states 0 and 1 [62, 63]. In quantum computing, it is
possible to prepare a system cold enough for the electron
not being able to escape from the two levels with the lowest
energy. As shown in Fig. 1 an atom can have two orbitals
that simulate the behavior of a qubit. When the energy is
not enough to change its orbit, the electron remains in an
intermediate state, the superposition is broken (collapse or
decoherence), and it is likely to pass to state 0 or 1.

Quantum computing has the advantage that it benefits
from superposition or parallelism by considering all the paths
at the same time, thus increasing its processing capacity. It
can be represented by the qubit, which is the smallest unit of
the Information Theory [64].

For representing the superposition for 1, 2 and n qubits, it
is proposed [65]:
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Table 1 Industrial areas with IoT quantum algorithm applications

Area Description Method/algorithm Parameters

Telecommunication An energy optimization model for IoT environments
applied to a stochastic environment with a green
communication framework is proposed. It aims to
obtain sustainable development while safeguarding
the environment. A monitoring system is created
wherein the energy consumption and the cost
generated by sensing, processing, and
communication activities are relevant. Data
communication consumes most of the energy of
the sensors [19]

Quantum Energy
Balancing in
sensor-enabled IoT
systems

Network lifespan,
power
consumption, dead
nodes, and
execution time

A method of balance between energy efficiency and
the provision of quality of service is proposed,
which measures the permanence of certain
standards in data services. It seeks to prioritize
traffic between different devices connected to the
same router, to determine that the proposed
optimization algorithm generates a balance
between network lifespan and performance [20]

Optimization of
quantum particles
swarm.
Non-dominated
sorting Genetic
Algorithm

Network Lifespan
and Outage
Performance

A fog-based protocol is created to produce secure
routing. Fog-based is a cloud technology in which
data is obtained with devices that are not directly
uploaded to the cloud but are prepared in smaller
decentralized data centers. The Quantum Firefly
Optimization-based Multi-Objective Secure
Routing protocol is obtained, thus allowing to
produce better results in the metrics [21]

Quantum Firefly
Optimization

Packet delivery,
packet loss and
average delay,
energy
consumption

Research is made on the improvement of a particle
swarm algorithm, with quantum mechanics to
configure the optimal path. It is used in IoT
applications with enhanced connectivity for
network troubleshooting. Optimal solutions are
obtained with a lower estimate of the proficiency
function [22]

Quantum Particle
Swarm
Optimization
(QPSO)

Number of nodes,
transmission range,
consumed energy,
payload message,
data length, and
data transmission

A high-performance clustering protocol is built:
quantum clone whale optimization algorithm. The
technique improves the communication system by
obtaining high quality, according to its energy
expenditure and the time of sending the
information. It extends the lifespan of the network
and effectively minimizes energy consumption [23]

Optimization of
quantum clone
whales

Network lifespan,
energy distribution,
and data
transmission delay

The development of a node location algorithm is
studied and applied in a system of isotropic
networks that seek to exceed the speed limits of a
conventional network, for robust and precise
technology. It is obtained a cost-effective
alternative that uses GPS [24]

Salp Swarm of
quantum behavior

Precision and
robustness of
network anisotropy

Medicine A monitoring system based on the IoT and a WSN is
created. They are applied in the medical care of
infants and the elderly to improve the quality of
life and reduce the electricity consumption of the
system [25]

Quantum Particles
Swarm
Optimization

Data accuracy,
algorithmic
efficiency, and
energy costs of
routes

With QPSO, it is possible to improve regression and
update testing of IoT software applications and
sensor networks. It seeks to improve robustness and
reduce the cost of failure coverage, and it is applied
to customer service in the health area. Better
results are obtained than with the genetic and
Particle Swarm Optimization (PSO) algorithm [26]

Optimization of
particles swarm of
quantum behavior

Coverage of failures
and declarations,
inclusiveness, and
reduction of failure
detection costs
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Table 1 continued

Area Description Method/algorithm Parameters

Road safety In a sensor space with IoT applications in a
stochastic environment, real-time data are taken
and optimized by maximizing the accuracy of the
data obtained from the process and improving
reliability. A traffic and route monitoring system is
generated [11]

Quantum
Optimization with
IoT

Data Cost, Data
Accuracy, Data
Reliability, and
Data Time
Efficiency

Large amounts of IoT data are optimized in
real-time. The methodology incorporates a
real-time IoT sensor space, which is optimized
with a quantum algorithm. The simulation in the
vehicular traffic of a road is evaluated, and the
results show temporal efficiency and performance
parameters [27]

Quantum Computing
Optimization

Data similarity,
energy efficiency,
accuracy, and
reliability

Education A planning system for the teacher is proposed, so as
to achieve energy efficiency in the network of
wireless sensors, assisted by IoT. It is classified
into two types of student levels (outstanding and
medium level), wherein the student evaluates what
he or she learns from the teacher and the system is
responsible for delivering the best educational
programming according to his or her level by
finding the best teachers for the student; thus
obtaining an increase in the life capacity of the
network [28]

Quantum Group
Teaching
Optimization

Average delay, Mean
residual energy,
packet loss rate,
packet delivery
ratio, and network
lifespan

Table 2 Characterístics of quantum algorithms

Field Algorithm Optimization

Energy Nodes Data

Telecommunications Quantum Energy Balancing in sensor-enabled IoT systems � � ×
QPSO � � �
Quantum Firefly Optimization � � �
QPSO � � �
Quantum clone whales � × �
Quantum Salp Swarm × � ×

Medicine QPSO � × �
QPSO × � �

Road safety Quantum methods and IoT × � �
Quantum Computing � × �

Education Quantum Group Teaching � � �

• Example (n = 1).For 1 qubit it is obtained the dimension
21.

• Example (n = 2). In the case of 2 qubits, 22 dimensions
are obtained, corresponding to simultaneously having the
combinations 00, 01, 10 y 11 [62].
In the Bloch sphere shown in Fig. 2, the ψ state describ-
ing the linear combination of ket 0 and ket 1, given an
orthonormal basis, is represented
Regarding the mathematical formulation, the following
linear combination is proposed [69].

| ψ〉 = α | 0〉 + β | 1〉 =
(

α

0

)
+

(
0

β

)
=

(
α

β

)
(1)

With α ∈ C and β ∈ C

It is worth mentioning the probabilistic condition for the
normed complex magnitudes α and β:

| α |2 + | β |2= 1. (2)
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Table 3 Quantum-inspired communication and IoT methods

Method Description Technology Algorithm

Quantum optimization The information routing of IoT devices is optimized
for minimizing the energy consumption of the
sensors and extending the life span of the network.
The metrics are compared and a better solution
than other methods is obtained, related to the
energy, measurement, and rotation angle [19]

IEEE 802.15.4 for
WSN, with Personal
Area Network
Standard

Quantum
metaheuristic with
green
communication

The negative effect of the transmission power for
enhancing the quality of service is minimized. In
the results, a greater convergency speed than the
PSO and QGA algorithms is obtained [29]

IoT devices according to
a Cooperative
Multiple-Input-Single-
Output (CMISO)
scheme

Coalition selection
based on qubits

With the CMISO and quantum PSO algorithms, the
routing is optimized and the life span in local
networks for short-range IoT is extended. The
election of the optimal emitter-receiver cooperative
device pair is improved [30]

IoT devices
incorporating CMISO
schemes

Coalition selection
based on qubits
(QPSO)

Post-quantum cryptography The privacy in the IoT communication is improved
with an algorithm for devices of greater power. Its
performance is validated by means of attacks on
the network using MIRAI bots and Xilinx IS14.5,
with frequency, confidentiality, power, error, and
latency metrics [31]

Xilinx ISE14.5 tool for
IoT devices

Diffie Supersingular
Multiplication

Examines fundamental features and architectures of
IoT systems, and, from this analysis, focus on the
security of the systems with limited hardware
resources [32]

Lattice in IoT devices
security

Sensitive
classification for
cryptographic
security

Object-oriented programming With the algorithms based on Reliable Anchor Pairs
and Salp Swarm of quantum behavior, the impact
of the anisotropy in the localization of WSN with
IoT is mitigated. The optimal node pairs are
elected for minimizing the traffic in the network.
The results show that greater accuracy and
robustness are obtained [24]

Wireless sensor
networks

Quantum Behavior
Salp Swarm

It is studied that post-quantum algorithms can be
efficiently executed in the current hardware of IoT
and that the IoT communication systems are secure
enough when faced with the threats posed by
quantum computers and Shor algorithm
applications [33]

Post-quantum
cryptosystems
incorporated into IoT
devices

Post-quantum
encryption

WoS, https://www.webofscience.com/wos/woscc/summary/bca3dfd0-42d3-4113-bdce-faecdabd57e7-5c6a8b63/relevance/1, access on 8/11/2022

Wherein | α |2 is the probability of the qubit being in ket
0 y | β |2 is the probability of the qubit being in ket 1
[61].

• Example for n. It is possible to have multiple qubits with
2n dimensions. It is a quantum entanglement state with a
higher correlation than classical systems.

Quantum systems

The evolution or dynamic of the qubits is determined by a
unitary operator U , over the Hilbert vector space with finite
or infinite dimension. The Hilbert space is based on the pos-
tulates of quantum mechanics [70–72].

It follows the following steps:

Step 1Choose the system to be described. There is a system
described by a unitary state vector | ψ(ti )〉 belonging to a
Hilbert vector space.

Step 2 Choose the possible system configurations. The
systemψ (ti ) changes of stateU in time, and there is a linear
transformation in which the quadratic sum of probabilities is
maintained equal to 1

S1 :| ψ(ti )〉 U−→ S2 :| ψ(ti+1)〉. (3)

With S1 = system 1 and S2 = system 2; i = 1, 2, . . . n,
i ∈ N.

Equation (3) may be expressed as a dynamic matrix of the
system.
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Table 5 Classification of the key attributes of each quantum and metaheuristic algorithm

Type Criteria Complexitya,e Efficacyb,e Processingc Accuracyd

GA Data processing � × × �
Mathematical Modelling × � × �
Object detection × � × �

QGA Data processing � × � �
Mathematical Modelling � × � �
Object detection � � � �

ACA Data transmission for wireless sensors � × × �
Logistic optimization × � × �
Data transmission for communication networks � � × �

QACA Data transmission for wireless sensors � � � �
Logistic optimization � � � �
Data transmission for communication networks � � � �

FA Device routing � � × �
Image segmentation � � � �
Performance optimization � � × �

QFA Device routing � × × �
Image segmentation � � � �
Performance optimization � � � �

aAlgorithm complexity or efficiency: rapidness of the internal decision, execution of the prediction and encoding [54, 55]
bEfficacy: The algorithm follows the procedures in an ordered and coherent way for achieving the objectives, has correct acceleration, stability, and
scalability capacities [56, 57]
cProcessing: Set of steps of an algorithm which show connection and synergy among them [58]
dAccuracy: The percentage obtained by comparing the resulting value of the computing algorithm with the theoretical algorithm (mathematical
calculation) [59]
eComplexity and efficacy: uses less resources [60, 61]

+

+
+

+

+

-

-

—0

—1-

Fig. 1 Atom with 2 orbitals simulating 1 qubit

Step 3 Propose the dynamic of the system for explain-
ing why it moves. For example, 3 hermitian or self-adjoint
matrixes may be provided in a complex vector space V with
a sesquilinear form h : V ⊗ V → C, wherein h is antilinear

|1〉

|0〉

|ψ〉

x

y

z

φ

θ

Fig. 2 Parallelism [66–68]

(or conjugate linear). A hermitian form requires:

h(x, y) = h(y, x); x, y ∈ V . (4)
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Sensors

Actuators

Transmitter Concentrator
Quantum

genetic algorithm
Quantum

optimizationSensors

Actuators

TransmitterTT

Tunnel

Fig. 3 General diagram of the experiment

Then, Ei = V H
i ; i = 1, 2, 3 is a real vector space with

hermitian forms of V H .
In a quantum system, an observable may be defined if the

sum of the probabilities equals 1, that is, if it is known how
many possible results there are in the observation, as shown
in Eq. (5):

E1 + E2 + E3 = 1. (5)

It is possible to define the superposition and create two
stable states A and B [73]:

E A →| A〉 = | 0〉+ | 1〉√
2

; EB →| A〉 = | 0〉− | 1〉√
2

. (6)

Step 4 Performing measurements.
With R the observable is measured and U shows the change
in the state from system 1 to system 2:

S1
U→ S2

R→ Pi = 〈ψ | Êi | ψ〉. (7)

In Eq. (7) the probabilities Pi with i = 1, 2, 3 for the three
hermitianmatrixes E1, E2, E3, shown in step 2, are obtained.
The notation for the self-adjoint hermitian operators Êi is
used:

〈ψ | Êi | ψ〉.

Since Êi is a Hermitian operator, both ket or bra may be
used indistinctly. Hermitian operators have real eigenvalues
and real, orthogonal eigenvectors [74].

The entanglement, until the time of themeasurement, does
not have a well-defined spin (measurement of the angular
momentum due to the rotation of the particle about its own
axis), and the variables of the system on which its value
depends are not known. It is possible to know the state of an
observable particle and its result as expressed by its proba-
bility.

Mathematical formulation

In this work, the results of the experiment shown in Fig. 3 are
presented. Said experiment uses communication resources,
which may be adapted to an underground mine. A scenario is
created, in which a tunnel is provided with sensors and actu-
ators that capture, store and transmit humidity, temperature,
differential pressure, and CO2 data. The devices are con-
nected to a hub that sends a large amount of data to a central
point, which is connected to the cloud computing infrastruc-
ture wherein a quantum genetic algorithm is applied and the
quantum information is optimized.

Quantum Genetic Algorithms:. A QGA based on quantum
mechanics is used. The algorithm searches for a global opti-
mum from the chromosomes and the updating of the quantum
gates [75].

Unlike the classical genetic algorithm inwhich the popula-
tion evolves genetically by selecting, crossing, and mutating
genes;QGAuses themethod of chromosome evolution based
on the quantum rotating door, increasing its performance and
the interference crossover that provides a greater crossover
of the [68] chromosomes.

In the evolutionary algorithm, it is possible to record a
quantum chromosome gene with one or more qubits that
can represent the probability of storing information in states
0, 1 or as a superposition of two quantum states [69] (see
Eqs. (1) and (2)). By generalizing, as mentioned in the exam-
ple of “Quantum systems” for n qubits, the chromosomewith
length n can be observed in 2n states.

The quantum chromosome is updated from generation to
generation to evolve the optimal individual [69]. As shown
in Fig. 2, a quantum logic gate may be represented by a 2×2
matrix, wherein θ is the rotation angle:

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
. (8)

The measurement process of each record allows chang-
ing the amplitude of the observable individual, wherein the
search for the best solution is determined by updating the
chromosome [76]. α y β are modified (see Eq. (1)) generat-
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Fig. 4 a Installation of the communication system in the mine, b FSO transceiver within the mine tunnel, top: outside the tunnel, below: inside the
tunnel

ing an entanglement and the best solution is obtained:

[
α′
β ′

]
=

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
x

[
α

β

]
. (9)

In the encoding process, there is a chain of one or more
input records for the measurement process of the observable
[60]. The new quantum chromosome is obtained:

CQ =
[
α1 | α2 | · · · | αn−1 | αn

β1 | β2 | · · · | βn−1 | βn

]
(10)

wherein:

| α |2i + | β |2i = 1 ,∀ i = 1, 2, 3, . . . , n. (11)

The number of the population of quantum chromosomes
is initialized:
(

1√
2
,

1√
2

)
. (12)

A measurement is performed with a group of possible
solutions according to the iteration in which the execution is
[77]. The global optimum is sought, wherein each solution is
particularly observed, saving the best value among the group
of solutions [60].

Regarding the optimization formula to be used for the
quantum genetic algorithm, the following are maximized in
3-D in real-time: the distance between the sensors Zi with
i = 1, . . . , 5 being the environment or the neighborhood of
the object of study Xk where k is the number of objects.
Points in space that are close to a given point or that are close
neighbors to a fixed point are sought [78].

It is had that by varying the time in a �t it is possible to
identify the optimal sensor for the object Xk in the algo-
rithm Q. The optimization Q has stat-dynamic detection
capabilities in a multi-object IoT environment, where the
environment is stochastic and dynamic. The optimization Q
also evaluates the IoT of the environment with respect to a
specific object [15, 27].

The displacement is optimized with the following mathe-
matical model [11]:

Q = max
x∑

k=1

z∑
j=1

y∑
i=1

(
wi jk ∗ √

Yi jk
)2

. (13)

With
wi jk ∈ (0, 1) ∀i, j, k = (0, . . . , 1) being the weight

associated with the data.
Yi jk being the environment parameters related to the

object and the sensor.

Experiment

The feasibility of improving communications in an under-
ground mining environment with an optimized quantum
genetic algorithm will be studied in the experiment.

Description of the system

The experimental system represented in Fig. 3 has the fol-
lowing steps:

Step 1: data acquisition from humidity, gas, temperature,
and pressure sensors. As shown in Fig. 4, the sensors are
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installed at a uniform distance from each other, such that
the distance between devices is equidistant within a length
of the measured environment. An object having a non-zero
measurement probability within the environment is detected
and controlled with an Arduino Mega 2560 microcontroller
and a TTGO T-Beam Rev1 LoRa Node. The ID, key, fre-
quency, and spread are obtained from each device.

With the radiofrequency nodes in the tunnel, the sensor
information is sent to a hub with a fixed position, and an
IoT network is built. The physical system is formed by a
LoRaWAN Gateway (Raspberry pi + 3B + Hat Dragino PG
1301), a Gigabit Switch, and a Raspberry Pi 4. Three sensor
nodes, among which two move away from the hub at regular
distance intervals and one is kept at a fixed distance from the
hub are configured for obtaining the data. The information is
sent from each LoRa node to the hub, which sends the data
to the local server.

At the next connection interface stage between sensors,
the metrics Received Signal Strength Indicator (RSSI) and
Signal-to-Noise Ratio (SNR), associated with the range,
instrument reach length (span), and response time variables,
are obtained. For each sensor, the following attributes are
captured: ID, name, description size, sensor, and device. The
data are sent to the central hub and the Backhaul block.

Step 2: Optimization of the Quantum Genetic Algorithms.
The data sent through the Backhaul block are received and
the IoT devices are connected to a cloud server acting as a
data repository in real-time. The “cloud” is a combination
between The Things Network (TTN) server, that manages
the LoRaWAN communication and computing services at
a local server, wherein the services of optimization of the
quantum-genetic algorithm are stored.

A quantum-genetic algorithm is built based on the meth-
ods of [79–81] and the IBMQuantum experience platform in
the Cirq Python library. The quantum circuit is built inspired
by the Deutsch–Jozsa (DJ) theory, which improves the dis-
tribution of the quantum keys that provide autonomy and
robustness [82]. The DJ theory searches the optimum value
of the objective function and can be used with the Hadamard
logic gate (represented inFig. 2 andEq. (14) that allows quan-
tum superposition with equally probable states.

H = 1√
2

[
1 1
1 −1

]
. (14)

The Hadamard gate is obtained as a linear combination of
Pauli matrices and the Pauli gate may operate as a Not gate. It
is to be mentioned that the Not gate is the one performing the
chromosomic variation and may transform the probability
amplitudes of the selected qubits, according to the proba-
bility of random mutation, to increase the diversity of the
population and reduce the premature convergence, providing
robustness since losses of a great part of the information of

q[1] H | H H | z

q[2] Z H | | H z

c1
0 0

Fig. 5 Quantum System, Software IBMQhttps://quantum-computing.
ibm.com/composer/files/6a178b3b75b834bdc4531221f05ef24d2dccd
6901192b1edf50c8be7a2104f7b

the population are avoided [61, 83]. The gates are combined
and a quantum system as shown in Fig. 5 is built.

The experiment follows the iterative process shown in
Fig. 6, which determines the global solution of themaximiza-
tion problem [68]. The chromosome of the algorithm comes
from the creation of a randomvectormatrix that generates the
individual selection process and their genetic crossing. The
aim of the process is to vary the chromosome among gen-
erations and has a mutation step that preserves the genetic
diversity of the population [35, 60].

For modeling the quantum-genetic algorithm, an adap-
tation of Eq. (10) will be used as an evaluation or fitness
function. Since the algorithm to be modeled is a kind of
learning algorithm, it is possible to use neural networks [84,
85].

For accelerating the creation of neural networks and train-
ing the model (Fig. 7), the open source Python library
kerasGA is included in Eq. (15). It is to be mentioned that the
prediction is generated depending on the object (for example,
people or vehicles working in the tunnel) and the parameters:
SNR, RSSI, distance, and a random binary number used for
generating the chromosome:

Q = max
x∑

k=1

z∑
j=1

y∑
i=1

(
wi jk ∗

√
kerasGA

)2
. (15)

With

wi, j,k, ε, (0, 1) ∀, i, j, k,= (0, . . . , 1)

kerasGA : parameter Y in 3-D.

Experimental results

The GA and QGA algorithms were tested with the objective
function shown in Eq. (15) and the database obtained from
the laboratory with the parameters SNR, RSSI, the distance
and binary number. Ten iterations of five generations each are
generated and, as shown in Fig. 8a and b, the quantumgenetic
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Fig. 6 Selection process. Pc(q)

corresponds to the quantum
population defined according to
the input record defined as
qubits. Pq(c) corresponds to the
quantum population defined
according to the genetic
operators for the recorded
chromosome. Based on [81]

Let q=0, the quantum
population should be initialized

Evaluate and record the best solution for Pc(q)

Is the
best

possible
solution?

Display the best solution for Pc(q)

Apply generic operators to the Pq(c)

Generate evaluation and
reselection of results for Pq(c)

Apply quantum rotation portal to
the best solution found in Pq(c)

Is the
new best
possible
solution?

Yes

Yes

No

No

Fig. 7 Forecast

Data source Data prepa-
ration

Model
selection

Model training Evaluation
of the model

Forecasting

kerasGA

Data source Data prepa-
ration

Data

Model
selection

Model training Evaluation
of the model

Modelling

algorithm obtains a higher fitness and a shorter computation
time than the GA.

Figure 9a shows the distribution of the results. It is
observed that GA converges rapidly in the second genera-
tion with values close to 1.5173. In relation to QGA, it can
be seen in Fig. 9b that the values found are relatively lower
at the beginning, and in generation 4 it approaches the global
optimum close to 1.9365.

By comparing the metrics in Table 6, the following advan-
tages of using the quantum genetic algorithm are observed: it
gets a higher accuracy, it has a higher computed true experi-
mental value for the objective function, and it ismore efficient
since a better performance in less average time and costs is
obtained.

Finally, in the experiment, the following considerations
were taken:

• A sensor package is not located at a point in the environ-
ment, at a shorter distance than another package of the
same type.

• Considering the technical specifications of the sensors
since the precision and accuracy can be improved for the
sensor package closest to the object.

Discussion

Analysis of QGA and its optimization function

In nonlinear optimization problems, effective and efficient
strategies are required for solving complex problems [86]. It
is important to find local optima that give a better solution in
the search space than those used as regional strategies that
are close to the objective function [87].
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Fig. 9 a GA and b QGA. The red dot represents the average

Table 6 Comparative table Metrics GA QGA

Real optimization value 1.9365 1.9365

Experimental optimization value 1.5252 1.9234

Algorithm performance [%] 78.76 99.32

Average response time [s] 36.45 12.46

In relation to the experiment, a rapid convergence was
observed that could be caused by entanglement [88]. It should
be said that the speed of convergence would not ensure the
existence of the optimum and in the case the optimum strays
from the local solutions, the solutions could not have a global
convergence [89]. On the other hand, in a quantum algorithm,

it is possible to have different tuning strategies of the quantum
revolving door that could prematurely converge locally at a
slow rate, in a state of stagnation [69].

In the optimization function, further analysis of the
chromosome function of the quantum genetic algorithm is
required [84]. It is necessary to improve the quantum genetic
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Table 7 Analysis of advantages and disadvantages of quantum systems

Criteria Advantages Disadvantages

Computing tasks More efficient with quantum properties than in
traditional systems. This is because in quantum
systems 2n superposition components are involved
in a single state, whereas in classical systems 2n

possible states are described by n bits [90]

Traditional computers can neither read nor store a
quantum state, therefore the greater efficiency for
performing the tasks is not verified [91]

Algorithm
processing

Most of the information is not accessible to reading
by other means and it has great processing and
execution speed capacities for solving stochastic
problems [58, 90]

The processing of information requires complex
coding, with an important hardware overload, for
performing efficient quantum processes in a robust
system [92]

Integrated data By simulating evolution with quantum entanglement,
it is possible to exponentially increase the amount
of data needed to describe the state, therefore
significantly decreasing the execution time [90]

The quality of the information is not ensured,
therefore, falsification and collusion errors can
occur due to malicious information emitters [93]

Execution
environment

If entanglement is physically performed in a general
state of the quantum or classical system of 2n

levels, linear resources are required [90]

There is a dependence on the quantum platform
responsible for generating entanglement,
establishing a reliable quantum link between two
connected nodes. The entanglement must be one of
the basic service elements offered by a system
being executed in a quantum network node [94]

Non-locality
action

The quantum entanglement does not depend on the
non-locality [95]

The characteristics of non-classical correlations,
non-locality, and entanglement show direct
influence on each other, generating a non-locality
dependence [96]

Algorithm
implementation

The quantum algorithm provides a greater accuracy
in the response by operating between different
energy levels, which in the case of electrons is low
[97]

Each algorithm must be built based on a quantum
circuit model and validated according to the
problem to be addressed. Therefore a specific
quantum algorithm cannot be extrapolated to a
different context [98]

algorithm by analyzing other optimization functions on the
chromosome, which do not use only the fitness function as
the traditional genetic algorithm and which deliver solutions
that have fast convergence to the local optimum. It is noted
that different scenarios can be generated in which: (1) the
quantum bit of the chromosome is not close to the optimum
or (2) in case it is in the optimum, a new chromosome is
generated that can move away from the current optimum and
affect the convergence of the algorithm [68].

More research is needed on hybrid quantum algorithms,
whereinmetaheuristics that generate a global search andopti-
mization methods that perform an efficient local search are
combined [89].

On the other hand, since the quantum genetic algorithm
is integrated into a communications system as shown in
Fig. 4, it can exhibit the advantages and disadvantages that
are exposed in Table 7.

Feasibility technological

QGA

In the experiment it was possible to generate the QGA algo-
rithm since with the Python Numpy library the spin vector is

built and the quantum superposition simulation is performed.
Qiskit, SymPy and QuTIP are used to build the quantum cir-
cuits and implement the quantum algorithms.

Future research will use IBM Quantum Experience to
bring the code to the mining company’s Amazon Web
Services (AWS) and Google Cloud Platform (GCP) cloud
monitoring service platforms.

Conceptual design

Figure 10 shows the QGA conceptual model that includes
the following steps: (1) the tunnels within the IoT network
in mining with the sensors that extract environmental data
from the ventilation system; (2) the genetic quantum opti-
mization space which will be hosted in the industrial routers;
(3) a control center that will monitor in real time the environ-
mental variables to make timely decisions and avoid risks,
for example, if there is excess CO2, a backup fan could be
alerted or activated.
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Fig. 10 QGA conceptual model

Advantages and limitations

Advantages

As mentioned in “Literature review”, it is feasible to use
quantum genetic algorithms in the field of telecommunica-
tions which are more robust than conventional algorithms.
It is observed that QGA meets the criteria required for the
implementation of the experiment shown in “Experiment”
since it can process data, performs mathematical model-
ing, detects objects and can determine energy efficiency (see
Table 4).

Another advantage is that incorporating QGA in the com-
munication systemmakes data transmission more robust and
ensures a higher percentage of availability of ventilation sys-
tems inside amine. By receivingmore reliable, real-time data
on flows within the mine (air flow rates, gas concentrations,
temperature conditions, etc.), decision-making and informa-
tion management would be more efficient and effective [99].
Secure and robust communication would allow for real-time
reporting of hazards and timely evacuation of workers [17].

Limitations

Another limitation is that the implementation of QGA
depends on the execution environment. In the experiment
described in “Experiment”, it was complex to build a QGA
runtime environment that could be adapted to a real mining
tunnel situation. Many tests were performed in the labora-
tory to determine which parameters and/or metrics of the
sensors and actuators comply with the postulates of quantum
mechanics which requires uncertain and non-deterministic

data. RSSI and SNRmetrics associated with range, span and
response time were selected.

Another difficulty was the creation of the database with
unstructured information; it was necessary to clean and struc-
ture the data so that it could be processed with the quantum
genetic optimization algorithm.

On the other hand, to develop a system such as the one
shown in Fig. 10 a multidisciplinary group is required since
knowledge of different areas related to: QuantumMechanics,
Heuristic Optimization, Electronics, Informatics and Com-
puting and with the knowledge of Data Management to help
in the decision-making process.

Conclusions

In this bibliographical review it is shown that there are more
practical than analytical cases that have been studied in the
field of quantum computing, and that there has not been
enough research regarding the quantum approach compared
to other traditional methods [10]. In addition, in Tables 1 and
5 it was determined that Telecommunications is the industry
field in which quantum algorithms with IoT have been ana-
lyzed the most; and that it is possible to obtain metrics for
object detection, data processing, and data modeling.

In “Literature review” it was shown that it is possible
to use hybrid algorithms that work with metaheuristics and
quantum computing. Despite the fact that there are indus-
trial applications in the literature, it has been difficult to
understand how they can be applied to a real case since it is
necessary to have knowledge and understanding of different
fields, such as: quantummechanics, metaheuristics, function
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optimization, programming, data analytics, and electrical
engineering.

Despite the multidisciplinary nature of the case study pre-
sented in this work, it was possible to integrate experimental
data obtainedwith sensors with input parameters of the quan-
tum genetic algorithm to obtain results that are close to the
global optimum.

It is necessary to continue investigating and analyzing
other optimization functions that could provide more effec-
tive and efficient local optimal solutions. If better solutions
are obtained, more secure communication in an underground
tunnel environment could be obtained with more robust
support. This could be implemented into a monitoring and
control system that allows to provide safe and optimum envi-
ronmental conditions for workers as they move through the
mine, due to, for example, the timely and safe connection
that would exist with the ventilation system.

In the future, new methods and protocols are required to
transmit quantum information securely and in real time, so
that in the future it will be possible to have a quantum internet
in companies to ensure communication between the sender
and receiver [100]. With quantum, it would be possible to
group quantumdevices in a network in the cloud, and itwould
also be possible to change the configuration currently used in
mining to transmit data over the internetwithfibre-optic cable
networks with short-range coverage that require repeaters (a
situation that generates vulnerability) [101].

In our opinion, it should be noted that with the influence of
artificial intelligence, there is a growingneed for communica-
tions systems that are more secure for data transmission and
that can withstand the changes brought about by the larger
5G technology. With quantum, data could be sent over long
distances, with secure cryptography.
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