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A B S T R A C T   

The traditional ceramics industry uses large amounts of primary mineral raw materials. Improvements in the 
production of building materials based on non-metallic minerals can contribute to sustainable development in 
many ways, such as saving natural resources, using waste materials, reducing energy consumption, decreasing 
emissions hazardous to the health and the environment, particularly carbon dioxide, and reclamation of mines 
after exploitation of raw materials, etc. This paper describes the state of application of mineral raw materials and 
waste in the traditional ceramics industry with a perspective on future challenges. Intensified research is needed 
to complement the laboratory data and re-scale to the industrial-sized products while improving communication 
between both sectors.   

1. Introduction 

Roadmaps urged by the European Commission for the ceramic in
dustry lay out ambitious long-term objectives for resource efficiency, 
energy savings and a low-carbon economy. Initially set for 2050 as their 
target year [1,2], they are recently anticipated to 2030 and include 
halfway goals [3]. 

Building materials of non-metallic origin represent, despite great 
technological development, still the essential materials in construction. 
Also, despite the series of difficulties it faces today, this industrial sector 
is one of the most vital in many countries. After processing of the 
ceramic materials, after the discard in production, or at the end of life, 
these can be re-used in modern technological conditions, which gives 
them the potential of recyclable resources. Although the production rate 
was highly reduced due to the financial crisis of 2007–2008, since the 
last decade, the manufacturing of construction and building materials 

has been slowly but steadily rebounding. For instance, in Spain, which is 
one of the largest producer of fired bricks in the EU, the production rate 
has increased by more than 60 % since 2014 [4]. 

Natural raw materials are the basis for the production of building 
materials and belong to non-renewable natural resources, given the time 
needed for their creation and the limited amounts. The continuous in
crease in the growth of industrial production imposed a multiplication in 
the amount of waste materials from various production processes. Some 
of the industrial waste has been reused today, and they represent sec
ondary raw materials of technogenic and anthropogenic origin. The 
degree of recycling, however, is extremely variable in time and space, 
depending on economic, technological and social conditions, and the 
legal framework as well. The initiative to create standards for secondary 
raw materials quality and a developed market is necessary for the ce
ramics industry [5]. Besides, the market reacts to „green products“ in a 
strongly differentiated way [6], often varying from country to country. 
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There is a general need for a better flow of information about 
environmentally-friendly products to consumers [6–8]. 

In the traditional ceramics industry, the key factors are the high-level 
consumption of natural resources and energy (most often from non- 
renewable sources), flue gases and large amounts of waste after the 
useful life of the product [8]. Another problem is the need for rehabil
itation and reclamation of mines after extraction. Given that the ceramic 
industry can consume a large share of waste materials due to a wide 
range of fluctuations in their composition, the research focus of recent 
decades has been mostly directed toward this subject. Bearing in mind 
that waste can increase the flue gases and the content of microelements 
in products, but also reduce the required amount of energy, those topics 
were secondary that came up from the main aim. Despite extensive 
lab-scale research on waste recycling [9–12], just a limited transfer of 
results to the industry occurred. This can be seen as a high-priority issue 
– caused by the lack of pilot plant and industrial scale trials – somehow 
justifying the reluctance of brick manufacturers to introduce waste for 
possible problems (damaging the kiln and/or overpassing emission 
thresholds and/or non-conformities of products). 

On the other hand, the production of ceramic materials implies 
considerable embodied energy in the finished products, and the industry 
still relies largely on non-renewable energy sources. Beyond the related 
environmental issues, the impact of fossil fuel prices on production 
strategies has been lately highlighted and poses a major concern for 
most manufacturers worldwide. In particular, the highest cost for a brick 
factory is undoubtedly energy (i.e., approximately 40 % by accounting 
only for the firing stage). Although it depends on several factors (e.g., 
type of fuel, firing kiln technology, raw materials characteristics, etc.), 
the energy performance for sustainability and competitiveness of the 
sector is crucial [13]. 

This paper provides a brief analysis of the literature and an insight 
into challenges that the traditional ceramic industry (particularly clay 
bricks, roof tiles, rustic tiles, etc.) has to face in the future and per
spectives to globally enhance the sustainability of this sector, especially 
through circular economy. 

2. State of the art and perspective of circular economy at 
laboratory-scale 

Natural raw and waste materials combined to produce ceramics is a 
well-known concept, extensively researched. Materials of both organic 
and inorganic origin (or their mixtures) have been utilized [12]. Using 
waste can result in ceramics with reduced density and thermal con
ductivity, among other advantages. There are possible savings in energy, 
but also an increased carbon footprint and health risks due to the 
emission of volatile organic compounds. The value from the perspective 
of waste disposal and the decreased consumption of primary raw ma
terials is not insignificant [14]. Numerous studies were conducted in the 
past to ascertain in which way the inclusion of industrial waste modifies 
the properties of fired bricks and roof tiles (such as microstructure, 
thermal conductivity, the coefficient of thermal diffusivity, water ab
sorption, shrinkage, compressive strength, bulk density, etc.) [12, 
15–18]. Examples of waste tested in fired brick include rice husks, 
sunflower hulls and sawdust [14], and different kinds of coal ashes [19]. 
Several publications related to the waste materials implementation in 
roof tiles have been published, for instance about aluminum sludge and 
glycerine pitch [20]. For a wider treatise on waste recycling in clay 
bricks refer to the literature [10–12,19,21,22]. 

When choosing a waste material that can be used to produce ceramic 
products, it is important to pay attention to how that addition changes 
the content of amorphous and crystalline matter in the final product. 
The increased quantity of crystalline phase is important for more porous 
products with water absorption above 6 % [23]. 

As far as laboratory examinations are concerned, more tests are 
needed regarding in the future regarding durability, frost resistance, 
leaching of potentially toxic elements, and generally aggressive 

environmental exposure. When designing experiments, it is necessary to 
keep in mind that the processing must be as close as possible to real 
industrial conditions [23]. Besides, the awareness of the market condi
tions and the requested quality of the final industrial products must not 
be neglected [24]. 

Nowadays, bricks are increasingly used as a basis for attaching 
ventilated façades. Therefore, thermal and acoustic insulation behaviors 
are required. In this respect, the use of certain waste materials can 
reduce thermal conductivity by increasing the porosity of fired products. 
Conversely, higher porosity frequently hinders mechanical resistance, 
whose minimum value is limited by building codes and standards 
(Fig. 1). 

3. State of the art and perspective of circular economy at 
industrial scale 

The economic importance and size of the construction sector are 
renowned, as the efforts spent to improve its environmental impact [2, 
60,61]. However, due to the intensive energy requirements for brick and 
tile production [1,60,61], its release of flue gases [1,2,62] and intensive 
raw materials consumption [63], with related quarry management and 
reclamation issues [63,64], this sector is called upon to further improve 
its sustainability. 

Nevertheless, the overall environmental impact of brick and tile 
production needs to be assessed more carefully, bearing in mind the long 
service life of ceramic products (the durability of a brick house is esti
mated at ~150 years) so that the embodied energy per year of use is 
much lower than with alternative building materials. 

In general, for the production of ceramic tiles, recycling is a 
consolidated practice (Water and Solid waste management) and only a 
small quantity of hazardous waste (spent lime) is sent to landfill [61]. 

From the literature, it appears that only a few types of waste and by- 
products have the potential to be successfully introduced into industrial 
practice. For instance, 10 % of fired brick scrap can be used as a sub
stitute for sand in illite-chlorite carbonate-rich clay (Fig. 2), but with no 
frost resistance [65]. Besides, packaging and cathode ray tube waste 
glasses were tested and gave promising results [66]. The only additive of 
organic nature implemented in industrial-sized bricks was coal dust [8], 
which is added to an illitic loess clay in an optimal amount of 3 %. 

The brick industry has used different coal ashes for a long, but the 
quantities are not often disclosed. Among the published studies, most 
are oriented toward producing industrial-sized hand-molded samples, 
where determined optimal quantities are up to 50 % [16]. Other suc
cessful examples are the incorporation of rice husk and sugarcane 
bagasse ashes into a soil containing low clay minerals quantity [67], and 
rice husk ash into a high clay mineral raw material with a significant 
quantity of iron [68]. In the roof tiles industry (Fig. 2), examples of 
waste recycling at industrial scale include 20 % of ceramic sludge [69], 
<15 % of rice husk ash [70] (and a combination of ceramic sludge and 
rice husk ash [71], and sewage sludge [72]. 

Although experimental studies on the implementation of secondary 
raw materials have been done extensively by universities and research 
institutes in the past, technology transfer and results on industrial-sized 
products are scarce and more research and development is needed. In 
this sense, the brick industry is facing new challenges, such as the eco- 
design of new construction products in line with the new trends in 
construction (e.g., larger low-density prefabricated products for indus
trialized settings, which facilitates the dismantling of buildings and re
duces the amount of waste generated). Improvements in the formulation 
of the raw materials are also required for more effective drying and 
firing stages, which necessitates extensive study [1,66]. In this frame
work, the contribution from computational tools that have been devel
oped by laboratory experiments is fundamental to improving the 
selection of waste materials and strengthening the knowledge of the 
influence of the various parameters involved [12,24]. 

Types of waste long used in industrial practice include [73]: 
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Fig. 1. Relative variations for compressive strength by adding organic (a) and inorganic (b) wastes and for thermal conductivity by adding organic (c) and inorganic 
(d) wastes, by literature [25–59]. 

Fig. 2. The successful waste implementation in traditional ceramic masses for industrial prototypes.  
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agricultural residues – like olive pomace sludge and olive stone (0.2–6.0 
wt %), biomass ash (1.0 wt%), grape seeds (0.8 wt%), rice husk – and 
industrial residues, such as coal fly ash, sawdust, paper sludge, petro
leum coke, soil from construction earthworks, and others (generally 2–9 
wt %). Heavy hollow blocks (so-called ’thermal blocks’, where porosity 
is a value to improve thermal resistance) are usually the main goal of 
waste recycling. To a lesser extent, also common bricks and hollow 
bricks and blocks can contain recycled materials. No waste is commonly 
incorporated into higher value-added products (e.g., roof tiles, large 
hollow slabs, facing and paving bricks and tiles). 

4. Challenges to improve sustainability of the ceramic industry 

Together with raw materials, energy demand and gaseous emissions 
are critical factors for the ceramic industry. According to life cycle 
analysis, the firing stage in this industry has the greatest environmental 
impact [61,74]. Apart from the best available techniques and proper 
process management [1], the main issue is globally the type of fuel used, 
which is then related to the composition and quantity of flue gases. As 
the most extreme example, petroleum coke is still used in developing 
countries, which increases CO2 emissions from the furnace, causes 
corrosion of refractory materials, pipelines and metal structures, along 
with sulfate efflorescence. Environmental pollution will undoubtedly be 
reduced as a result of improved energy efficiency, the development of 
cleaner technologies, and the utilization of renewable energy sources [1, 
2,75,76]. 

In the traditional ceramic industry, 50 %–88 % of the total CO2 
emission comes from fuel, depending on the type of product [1]. Spe
cifically, annually, in the EU the production of wall and floor tiles, bricks 
and roof tiles, and refractories results in 19 Mt of CO2 emissions [How to 
decarbonize the ceramics industry [77]. 

For example, the highest emission was recorded in the case of roof 
tiles, and the lowest in porous blocks [77]. To reduce CO2 emissions, 
emphasis is placed on the use of alternative fuels, even though most 
cannot be considered carbon neutral (i.e., the amount of CO2 released by 
combustion and the amount absorbed by photosynthesis are in balance). 
These include biomass from agriculture and forestry, and biodegradable 
urban, animal and paper waste. However, additional research is 
required on this topic, since biomass combustion can involve health 
risks. Today, the ceramic industry in Europe uses natural gas (85 % of 
the total energy demand) and electricity (for the remaining 15 %) in the 
production process [1]. In many developing countries, coal is still the 
predominant choice. Switching to the use of electricity for firing would 
move upstream the generation of CO2 (thermal power plants) and in
crease the production costs [1]. Efforts to “decarbonize” energy will 
reduce indirect electricity emissions from the ceramic industry but are 
estimated to be insufficient for the 2050 target. Future alternatives 
include the use of green hydrogen for the drying and calcination stages, 
although its adaptation to the ceramic industry is expected to be in the 
medium to long term, as well as the implementation of CO2 capture 
technology. Still in the shorter term, biofuels should be implemented as 
a source of thermal energy [78]. The cost of adaptation to the new en
ergy supply will have a big impact on how competitive the ceramic in
dustry will be globally. The additional use of solar energy would 
currently be the most beneficial option in terms of carbon footprint. 
Using locally accessible waste materials without carbonates can greatly 
reduce clay-related CO2 emissions, which are now estimated to 17 % 
[2]. Nonetheless, carbonates play a beneficial role during firing, 
increasing the mechanical performance of porous products, and inves
tigation on the cost-benefit of their replacement is needed. 

To establish a comprehensive strategy based on resource efficiency, 
it must be taken into account that future trends imply the need to reduce 
CO2 emissions in a sector with high-energy demand for drying and 
firing, maintaining brick quality and applying circular economy and 
eco-design criteria in processes and products. 

5. Conclusions 

The strategic goals of the sustainable development of ceramic ma
terials production will shift to a competitive, decarbonized and resource- 
efficient economy, and the maintenance of a high and stable economic 
standard and employment growth. The ceramic sector is important for 
Europe’s 2050 decarbonization target, and it must expand current 
knowledge and expertise to meet this great challenge and develop novel 
ground-breaking technologies. To put the principles of the circular 
economy into practice, future trends in this sector must address the 
following:  

1. Improving laboratory research, bringing experimental conditions as 
close as possible to industrial conditions,  

2. Utilizing renewable energy sources as fuel (green hydrogen, biofuels 
and decarbonized electricity),  

3. Developing CO2 capturing technologies,  
4. Open reporting on results, with mandatory highlighting of negative 

conclusions and problems/risks and opportunities, 
5. Enhancing industry-academia communication, promoting the pub

lication of results,  
6. Intensifying usage of mathematical tools and computational 

approaches. 
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[7] M. Spǐsáková, D. Mačková, The use potential of traditional building materials for 
the realization of structures by modern methods of construction, SSP – J. Civ. Eng. 
10 (2) (2015), https://doi.org/10.2478/sspjce-2015-0024. 
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approach to the influence of frequently used secondary raw materials on clay 
bricks quality using mathematical modeling (a systematic review), Ceram. Int. 44 
(2) (2018) 1269–1276, https://doi.org/10.1016/j.ceramint.2017.10.191. 
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[16] G. Goel, M.V. Vasić, N.K. Katiyar, S.K. Kirthika, M. Pezo, P. Dinakar, Potential 
pathway for recycling of the paper mill sludge compost for brick making, 
Construct. Build. Mater. 278 (2021) 122384, https://doi.org/10.1016/j. 
conbuildmat.2021.122384. 

[17] A. Ramos, M. Paz Saez, M.A. Rodraguez, M.N. Antan, J. Gamez, P. Piloto, Thermal 
properties of fired clay bricks from waste recycling. A review of studies, Fire 
Research 3 (2019) 71, https://doi.org/10.4081/fire.2019.71. 

[18] M.M. Ahmed, M.F. Abadir, A. Yousef, K.A.M. El-Naggar, The use of aluminum slag 
waste in the preparation of roof tiles, Mater. Res. Express 8 (2021) 125501, 
https://doi.org/10.1088/2053-1591/ac3bf7. 
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