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A B S T R A C T

Knowledge of the state of plastic deformation in metallic structures is vital to prevent failure. This is why non-
destructive acoustic tests based on the measurement of first order elastic constants have been developed and
intensively used. However, plastic deformations, which are usually heterogeneous in space, may be invisible
to these methods if the variation of the elastic constants is too small. In recent years, digital image correlation
techniques, based on measurements carried out at the surface of a sample, have been successfully used
in conjunction with finite element modeling to gain information about plastic deformation in the sample
interior. Acoustic waves can penetrate deep into a sample and offer the possibility of probing into the bulk
of a plastically deformed material. Previously, we have demonstrated that nonlinear acoustic methods are far
more sensitive to changes in dislocation density than linear ones. Here, we show that the nonlinear Second
Harmonic Generation method (SHG) is sensitive enough to detect different zones of von Mises stress as well as
effective plastic strain in centimeter-size aluminium pieces. This is achieved by way of ultrasonic measurements
on a sample that has undergone a three-point bending test. Because of the relatively low stress and small
deformations, the sample undergoes plastic deformation by dislocation proliferation. Thus, we conclude that
the nonlinear parameter measured by SHG is also sensitive to dislocation density. Our experimental results
agree with numerical results obtained by Finite Element Method (FEM) modeling. We also support the acoustic
results by X-ray Diffraction measurements (XRD). Although intrusive and less accurate, they also agree with
the acoustic measurements and plastic deformations in finite element simulations.
1. Introduction

Plastic strain in metals and alloys usually exhibits a non-uniform
distribution. This is true under controlled laboratory conditions due to
the anisotropy of the various mechanisms responsible for plastic defor-
mation, such as dislocation slip, twinning, and phase transformation [1]
and, most certainly, for pieces in service due to the actual heteroge-
neous boundary conditions at play [2]. Recently, the advent of additive
manufacturing has raised awareness of the fact that the fabrication
process itself can introduce heterogeneous microstructures [3,4].

The behavior of aluminium, of particular interest to the automobile
and aerospace industries, under plastic strain, has been a subject of
special interest. Sachtleber et al. [1] determined the spatial distribution
of plastic surface strains of aluminium polycrystals compressed in a
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channel die, using an image analysis method to determine the change in
surface patterns of the sample under consideration. This work spawned
a large body of subsequent research, particularly using the optical
correlations obtained at the surface of a specimen in tandem with
finite element modeling to obtain information about the behavior of the
innards of a sample for a variety of materials. The same principle can
be used substituting light by back-scattered electrons, and falls under
the general label of Digital Image Correlation (DIC) [5]. In addition to
aluminium alloys [6] examples include 𝛼-iron [7], Zr and Ti alloys [8],
stainless steel [9] and Inconel 718 [10]. The field has been reviewed
recently by Weidner and Biermann [11].

While the combination of experimental surface measurements with
three dimensional finite element numerical modeling has met with
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Fig. 1. Schematic illustration of the experimental setup for SHG measurements. (a) For the TOF measurement, a Gaussian modulated US pulse is generated and amplified. For
the SHG measurement, a sinusoidal voltage waveform is generated and amplified. In both cases, the US signal is emitted by a contact transducer, and a second one receives the
transmitted signal. For the TOF measurement, both the electrical emission signal and the received US one are acquired by an oscilloscope and these both signals are transferred
to a computer. For the SHG measurement, the FFT is computed by an oscilloscope and the first and second harmonic amplitudes are recorded on a computer. Measurements are
performed at four different lines: (b) Top-Bottom Line (TBL), (c) Top Line (TL), Middle Line (ML) and Bottom Line (BL). The letters in (b) refer to points where X-ray diffraction
measurements were performed.
undoubted success, the fact remains that it would be desirable to have
an experimental tool capable of penetrating a plastically deformed
sample without destroying it, and capable of exploring space-dependent
plasticity. In this work we show that such a tool is provided by
nonlinear ultrasound. Although the length scales available for explo-
ration compare with wavelength, say in the millimeter to hundreds
of microns range, ultrasonic waves penetrate with small, and, in any
case controlled, attenuation, in metals and alloys [12]. It is thus rea-
sonable to propose ultrasound as a non-intrusive probe to characterize
heterogeneous plastic deformation.

The mechanism we have chosen to obtain heterogeneous plastic
deformation is a three-point bending test. This generates sufficient
heterogeneity in the sample (as compared for example with a tension
test) and is standardized so our results should be easy to replicate. In
order to study these heterogeneities, bending tests can provide more
information about the expected behavior of a piece in service than, say,
uniaxial testing [13,14]. More broadly, bending tests are often used to
assess the mechanical performance of aluminium alloy sheets [15–18].

Acoustic methods have been used in crack detection [19–22] and
nondestructive evaluation of materials in general [23–26]. In recent
years, their application to measure dislocation density in metallic ma-
terials has been an active area of research. Advances in theoreti-
cal modeling and the development of instrumentation have allowed
acoustic measurements to emerge as a quantitative tool for measuring
dislocation density in the study of the plastic behavior of metals and
alloys [27–30]. In previous work, we have demonstrated that, in addi-
tion, different plastic deformation mechanisms, such as dislocation slip
and twinning, can be thereby characterized and identified [31].

Nonlinear acoustics has also been widely used to probe material
properties in many different fields, such as for geomaterials
[21,32,33], biomaterials [19,22], polycrystal characterization [34] and
for material damage assessment using Rayleigh waves [35]. There
appears to be a wide agreement in the literature that nonlinear meth-
ods are quite sensitive to small-scale inhomogeneities. Indeed, in our
previous work [34], a correlation between changes in nonlinear acous-
2

tic parameters and the dislocation density in aluminium and copper
samples subjected to different thermomechanical treatments has been
observed. We also demonstrated that the nonlinear acoustic parameter
obtained by Second Harmonic Generation (SHG) is more sensitive to
changes in dislocation density than the one obtained by Nonlinear Res-
onance Ultrasound Spectroscopy (NRUS) [34], and is thus preferable
to probe the plastic behavior of metals and alloys. In this work we
show that SHG, in combination with finite element modeling, allows us
to obtain local measurements of plastic deformation within aluminium
specimens subjected to three-point bending tests, obtaining information
about the plastic state of the samples at different spatial locations.

2. Experimental and numerical methods

2.1. Bending test

It is well known that a bending test will induce larger stresses
around the pushing points, so it is expected that different levels of
plastic deformation will occur in the longitudinal direction of a plasti-
cally deformed specimen. In order to demonstrate the sensitivity of SHG
in identifying zones with different plastic deformations, we decided to
apply a bending test to a metallic sample. The test specimen was fabri-
cated out of commercially 1100 pure aluminium (99.0% pure) with a
geometry defined in the standard ASTM E290-14 for bending test [36]
with dimensions 16×32×200 mm3. The as received sample without any
mechanical deformation nor thermal treatment was labeled as Original
sample (OS). Before the bending test, the OS was annealed at 400 ◦C for
125 hours to remove dislocations introduced during the manufacturing
processes. The annealed specimen before the deformation was labeled
as Annealed sample (AS). Then, a quasi-static three-point bending test
was performed using an Instron 3369 machine, with a maximum load
capacity of 50 kN. The applied load was 5 kN with a velocity of 0.01
mm/min. During the test, the mandrel was positioned above and at the
center of the specimen, and the bottom supports were at 1.0 cm from
each edge. The annealed sample after the deformation was labeled as

Post Bending sample (PBS).
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Fig. 2. Schematic drawing of the boundary conditions used in the 3-point bending test simulation process. The lower pivots have the ‘‘fixed volume constraint’’ (�̄� = 𝟎) which does
not allow deformation or movement of these pivots. The contact edge condition is continuity, so the deformation of the sample at the contact edge (𝒖 is the displacement vector
in the sample) with the pivots is zero. The upper cylinder imposes the force on the specimen with the ‘‘boundary load condition’’ on the contact surface between the cylinder and
the specimen.
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2.2. Acoustic measurements: speed of shear and longitudinal waves

In this study, the speed of elastic waves were measured with the
setup presented in Fig. 1(a) using the time of flight (TOF) method: an
ultrasonic (US) pulse of carrier frequency 𝑓 = 3 MHz that is modulated
by a Gaussian function, with a final width of about 5 oscillations, is
transmitted into a probe, as in [30]. A pair of ultrasonic transducers are
used to emit and receive the ultrasonic signal (Panametrics — V110 for
longitudinal waves and V156 for transverse waves, both resonant at 5
MHz, with element diameter 8.8 mm). The measurements are performed
t points along the top-bottom line as shown in Fig. 1(b). The wave
peeds are computed by measuring the US pulse time of flight through
he sample by cross-correlation between the electrical signal used for
S emission and the measured US signal. The distance traveled by

he wave, 𝑙, is obtained at each ultrasonic measurement point using
Mitutoyo micrometer screw, with 0.001 mm precision.

.3. Acoustic measurements: Second Harmonic Generation

In SHG a second harmonic wave is generated from a propagating
onochromatic elastic wave. This is due to the anharmonicity of the

lastic material and the presence of micro-structural features such as
islocations. The second harmonic nonlinear response is quantified by
he nonlinear parameter [37]

= 8
𝑙𝑘2

𝐴2𝜔

𝐴2
𝜔
, (1)

where 𝑘 is the wave number and 𝑙 is the elastic wave propagation
distance. 𝐴𝜔 and 𝐴2𝜔 are the absolute physical displacements of the
fundamental and second harmonic waves. The nonlinear parameter 𝛽
has a linear relationship with dislocation density, to a first approxima-
tion [34]. In this study, the SHG method was applied using the setup
presented in Fig. 1(a): in this case a continuous ultrasonic longitudinal
sine wave of frequency 𝑓 = 3 MHz is transmitted into a probe. Through
Fourier analysis of the received signal, the fundamental (�̄�𝜔) and
he second harmonic (�̄�2𝜔) amplitudes, in volts units, are measured.
herefore, using (1) and 𝑘 = 2𝜋𝑓∕𝑣𝐿 the nonlinear parameter 𝛽′ is

obtained in m/V units as

𝛽′ =
2𝑣2𝐿
𝑙𝜋2𝑓 2

�̄�2𝜔

�̄�2
𝜔
, (2)

where 𝑓 is the US wave frequency and 𝑣𝐿 is the longitudinal speed of
wave propagation in aluminium. Finally, in order to identify hetero-
geneities in the dislocation density along the samples, four measure-
ment lines were defined: Top-Bottom Line (TBL, Fig. 1(b)), Top Line,
3

Middle Line and Bottom Line (TL, ML and BL, Fig. 1(c)). The reason for
this choice is to explore the different plastic regimes in a three-point
bending test: The ‘‘Top’’ (concave) region bends in compression, the
‘‘Bottom’’ (convex) region bends in tension, and the ‘‘Middle’’ region is
in between. In this way we explore the fairly complex space dependence
of stress that is associated with the plastic bending regime.

2.4. X-ray Diffraction

In order to support the SHG results, we applied X-ray Diffraction
technique (XRD) to obtain the dislocation density 𝛬𝑋𝑅𝐷 at different
points of the Post Bending sample, and compare them with the same
measurements of the annealed sample. For the XRD measurements, we
have used the same procedure and equipment reported by Espinoza
et al. [34]. Lattice parameter 𝑎 and microstrain ⟨𝜖2⟩1∕2, are obtained by

ietveld refinements of the X-ray patterns with the Materials Analysis
sing Diffraction (MAUD) software. We use 𝐿𝑎𝐵6 (𝑎 = 4.1565915(1) Å)

as external standard for the determination of instrumental broadening.
The calculation of dislocation density 𝛬𝑋𝑅𝐷 from the microstructural
parameters 𝑎 and ⟨𝜖2⟩1∕2 is obtained through

𝑋𝑅𝐷 = 24𝜋𝐸
𝐺𝐹

⟨𝜖2⟩
𝑎2

, (3)

where 𝐹 ≈ 5 for FCC materials, 𝐸 = 74.4 ± 1.9 GPa is the Young’s
modulus and 𝐺 = 28.1±0.8 GPa the shear modulus for Al. These values
are calculated as the averages of those reported in [38–40], with error
bars given by the computed standard deviations.

2.5. Finite Element Method simulations

Finite Element Method (FEM) simulations of the bending test have
been developed to complement the results obtained experimentally, as
well as to obtain parameters that are not possible to measure experi-
mentally. The simulations have been carried out with the finite element
technique using the Solid Mechanic module of the COMSOL 5.6 [41]
program. The simulation reproduces the bending test performed ex-
perimentally, with the same probe dimensions (see Section 2.1). The
simulated material properties are obtained from the COMSOL mate-
rial library and are complemented by the experimentally measured
behavior.

The simulation is performed up to the experimentally measured
loading limits, which implies that the material, in certain regions, ex-
ceeds the yield stress. When this occurs, an isotropic bilinear plasticity
model is used, in which Young’s modulus, Yield stress and isotopic
tangent modulus are required as input variables. The bilinear method
consists of representing the stress–strain curve as two straight lines

intersecting at a point corresponding to creep. The first line, which



Materials Science & Engineering A 868 (2023) 144759C. Espinoza et al.

(

(

h
o
m
a
c
t
m
m
p

t

𝑆

5
i
s
i
i
t
w
t
a
i

Fig. 3. (a) XRD profile of the Original sample, also reported in [30]. Six peaks are detected, corresponding to different crystallographic lattice planes: (111)(2𝜃 = 38.45◦),
200)(2𝜃 = 44.70◦), (220)(2𝜃 = 65.08◦, inset (a2)), (311)(2𝜃 = 78.20◦), (222)(2𝜃 = 82.40◦), and (400)(2𝜃 = 99.05◦). Inset (a1): A distribution of two crystallite sizes contribute to the

(200) diffraction peak as well as to the other peaks (not shown here). (b) Post Bending sample measured in the ML𝐴 point (see Table 1). Six peaks are detected, corresponding to
different crystallographic lattice planes: (111)(2𝜃 = 38.51◦), (200)(2𝜃 = 44.75◦), (220)(2𝜃 = 65.12◦, inset (b2)), (311)(2𝜃 = 78.24◦), (222)(2𝜃 = 82.44◦), and (400)(2𝜃 = 99.09◦). Inset
b1): A distribution of three crystallite sizes contribute to the (200) diffraction peak as well as to the other peaks (not shown here).
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as zero intercept and ends at creep, corresponds to the elastic zone
f the material. The slope of this first line corresponds to its Young’s
odulus. The second straight line indicates the creep point and ends

t the maximum deformation point. The slope of this line, which
orresponds to the plastic zone of the material, is called the isotopic
angent modulus. The values used for these parameters are: Elastic
odulus 𝐸 = 74.0 GPa; Yield stress 𝜎𝑌 = 30.0 MPa; Isotropic tangent
odulus 𝐸𝑡 = 2.0 GPa. These values are obtained from previous tests
erformed on the same material [30].

The boundary conditions of the system are presented in Fig. 2. On
op, at the center of the specimen, a force is exerted on the surface

⋅ 𝒏 = 𝑭𝑨 =
𝑭 𝑻 𝒐𝒕
𝐴

,

where 𝑆 is the second Piola–Kirchhoff stress tensor, 𝒏 is the normal
vector of the contact surface, 𝑭𝑨 is the force per unit area, 𝑭 𝑻 𝒐𝒕 is the
total applied force and 𝐴 is the contact surface. The contact surface
used in the simulation corresponds to the contact area between the
upper cylinder of the tensile machine and the upper face of the speci-
men. This area is obtained from the surface deformation experienced by
the sample after the experimental test. The latter varies between 0 and

kN, with 500 N steps. The simulation is performed quasi-statically,
n agreement with experimental conditions. At the bottom surface, two
tainless steel cylinders are configured as pivots and no displacement
s allowed at these points (�̄� = 𝟎, where �̄� is the displacement vector
n the pivot). The lower pivots are 180 mm apart. From the simulation,
he von Mises stress (𝜎𝑉𝑀 ), the plastic strain (𝜖𝑝𝑒) and the strain in the
hole specimen are obtained, i.e. as function of position (𝑥, 𝑦, 𝑧). With

his information, and by proper space integration, the averages 𝜎𝑉𝑀 (𝑥𝑖)
re obtained at the same positions 𝑥𝑖 where the nonlinear parameter 𝛽′
s experimentally measured (TBL, TL, ML and BL measurements).
4

d

Table 1
XRD measurements of dislocation density 𝛬𝑋𝑅𝐷 of the Post Bending sample. Errors for
XRD measurements are calculated with the Rietveld refinement results.

Post bending sample

Measurement point TL 𝛬𝑋𝑅𝐷

108
(mm−2) ML 𝛬𝑋𝑅𝐷

108
(mm−2) BL 𝛬𝑋𝑅𝐷

108
(mm−2)

𝐴 1.37 ± 0.46 1.95 ± 0.84 2.20 ± 1.99
𝐵 0.57 ± 0.24 1.27 ± 0.46 0.60 ± 0.27
𝐶 0.57 ± 0.24 1.60 ± 0.55 0.59 ± 0.69
𝐷 0.22 ± 0.08 0.64 ± 0.18 0.11 ± 0.25
𝐸 0.43 ± 0.10 1.79 ± 0.92 0.25 ± 0.08

3. Results

3.1. XRD results

As in previous work with polycrystalline aluminium, the XRD
diffraction patterns showed a distribution of crystallite sizes (phases)
contributing to each diffraction peak (see Fig. 3, insets (a1) and
(b1)). Each phase has an associated microstrain ⟨𝜖2⟩1∕2. To obtain the
islocation density 𝛬𝑋𝑅𝐷 using Eq. (3), we use the volume fraction
f each phase provided by MAUD as a weight factor. Table 1 shows
he XRD results of the dislocation density at different points of the
easurement lines, see Fig. 1(b), calculated as a weighted average

f the results for different crystallite sizes. This is to be compared
ith the average dislocation density of the original sample, 𝛬𝑂𝑅𝐼

𝑋𝑅𝐷 =
.12±2.89×107 mm−2, as reported in [30]. Fig. 3 shows the XRD profile
f the Original sample (a) and the Post Bending one (b), measured at
he 𝑀𝐿 in measurement point A. The deformed sample shows wider
eflections, with slower falling tails and reflection shift. These features
re characteristic of materials subjected to deformation in which the
ensity of crystalline defects increases.
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Fig. 4. Final condition of the specimens subjected to simulated three-point bending test for a force of 5 kN. The color scale shows the von Mises stress (𝜎𝑉𝑀 ) at each node of
the mesh simulation. The points of highest stress are in the contact zone of the lower pivots as well as in the zone where the force is imposed. The spatial distribution of the
effective plastic strain (𝜀𝑝𝑒, not shown) is qualitatively the same.
3.2. Simulations

With the numerical simulation, carried out with the same experi-
mental conditions, the values of deformation and stress at each of the
points of the mesh used are obtained. For this simulation the maximum
finite element size used is 1 mm. Fig. 4 shows an isometric projection
view of the specimen in its final condition, i.e. when subjected to a
deformation of 50 mm in the direction of the bending test, for which
it was subjected to 5 kN of force applied in the same direction. Fig. 4
shows that the stress field is heterogeneous in the complete volume,
maintaining the symmetry of the bending test. It is observed that along
the specimen thickness the stress is not constant, so that the imposed
deformation is a function of the position where it is measured.

To obtain the stress to which the specimen is subjected at the
acoustic measurement points described in Fig. 1(c), lines are created in
the simulation that cross the specimen starting at the point of contact
of the transmitter transducer axis and ending at the point of contact
of the receiver transducer. These lines are created with a separation
of 2 mm between them. Along each of these lines, the average von
Mises stress is calculated, thus obtaining a quantity that reflects the
average deformation along the acoustic wave path in the experimental
measurement.

The average von Mises stress of each acoustic wave path is presented
in Fig. 5(a). As expected, when plotting this average stress as a function
of the 𝑥 coordinate, it can be seen that its maximum is achieved in the
central zone, at the point of force application by the mechanical testing
machine, for all the analyzed zones (TL, ML, BL and TBL). Between
the coordinates 𝑥 = 90 mm and 𝑥 = 80 mm (also at −80 mm and
−90 mm) there is a local maximum which correlates with the position
5

of the lower pivots of the bending test. This local maximum is highly
attenuated at the TL line, showing that at that height the effect of the
pivots is highly reduced. On the ML line, the von Mises stress values
are lower than for the other lines, but not zero. This is in agreement
with what one would expect of not-too-large deviations from elastic
displacements in plane strain, which indicate that the upper zone of the
specimen is subjected to compression, while the lower zone is subjected
to tension, and that there is a line, near the center of the specimen, in
which the deformation is zero [42].

For the reader’s reference, the black segmented lines in Fig. 5(a)
show the position in which the ultrasonic transducers were positioned
to obtain the 𝛽′ parameter.

In the FEM simulation, it is possible to obtain a quantity represent-
ing the plastic deformation, i.e. the non-reversible deformation that
occurs for the different stresses applied at each finite element node.
This quantity is known as ‘‘effective plastic strain’’. In the process
of finite element simulation with the COMSOL structural mechanics
module, the stress is calculated:

𝜎 = 𝜎𝑒𝑥𝑡 + 𝐶 ∶ 𝜀𝑒𝑙 , (4)

where 𝜎 is the stress at each node, 𝜎𝑒𝑥𝑡 is the applied external stress,
𝐶 is the elastic constants tensor and 𝜀𝑒𝑙 the elastic deformation. The
total deformation (𝜀) can be decomposed into the elastic deformation
(𝜀𝑒𝑙) and the plastic deformation (𝜀𝑝𝑒), i.e., 𝜀𝑒𝑙 = 𝜀 − 𝜀𝑝𝑒. In this way,
a quantity is obtained representing the material’s permanent changes,
which are associated with the microstructural changes [43] of the
sample subjected to the bending test.

Fig. 5(b) shows the average effective plastic strain along each of
the acoustic wave paths as a function of the 𝑥-coordinate. It can be



Materials Science & Engineering A 868 (2023) 144759C. Espinoza et al.

𝑥
w

r
s
a
(
t

s
|

a
l
i
t
l
p
m

3

t
m
s
l

Fig. 5. Results of simulations of three-point bending test with 5 kN applied force. (a) Spatial average of von Mises stress along the acoustic wave path as a function of the
-coordinate. The dashed black lines show the locations where the 𝛽′ parameter was experimentally measured. (b) Spatial average of effective plastic strain along the acoustic
ave path as a function of the 𝑥-coordinate.
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Fig. 6. Shear wave velocity. Blue circles, annealed sample; orange diamonds, post
bending sample. The solid blue line represents the shear speed average for the annealed
sample, and the dashed blue lines to the standard deviation around this average. Notice
that this standard deviation of 2.8 m∕s corresponds to 0.1% of the average value. The
ed solid lines are guides-to-the-eye showing the linear behavior observed for the shear
peed for the post bending sample. In this case, the variation between the maximum
nd minimum speeds is ∼ 20 m∕s, a difference of about 0.6% respect to the average.
For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)

een that for the TL line the effective plastic strain is zero for values of
𝑥| > 70 mm, thus showing that the pivots do not generate plastic strain
t that position. For the ML line, the effective plastic strain values are
ower than 0.5%, showing that along this line the plastic deformation
s small and is close to the zero plastic deformation zone of the bending
est. For the TBL and BL lines the behavior is quite similar, presenting
ocal maximum strain in the zone of the lower pivots and a maximum
lastic strain in the zone where the force is applied by the testing
achine.

.3. Velocity of shear waves for Annealed and Post Bending samples

Fig. 6 shows the speed of shear waves measured at different loca-
ions of the Original and Post Bending samples, along the top-bottom
easurement line. Using the formula that relates change in the speed of

hear wave 𝛥𝑣𝑇 with change in dislocation density 𝛥𝛬 and dislocation
ength 𝐿 [28]

𝛥𝑣𝑇 = −
8𝛥(𝛬𝐿2) (5)
6

𝑣𝑇 5𝜋4 a
e obtain, using 𝐿 ∼ 80 nm [30], 𝛥𝛬 ∼ 0.6 × 108 mm−2. This is similar
o the values obtained using XRD, as reported above. The scatter in the
ata, as well as the experimental uncertainties, preclude a more refined
etermination of the plasticity behavior of the bent sample as a function
f position. As we now show, these shortcomings can be overcome with
he measurements of the nonlinear acoustic parameter, in combination
ith finite element simulations.

.4. Nonlinear ultrasonics of the original and annealed samples

First, using the TOF method we measured an average value of the
ongitudinal wave speed in the annealed sample, ⟨𝑣𝐿⟩ = 6071 m∕s,
ith a dispersion 𝛿𝑣𝐿 = 15 m∕s given by its standard deviation. To

alculate the value of 𝛽′ using the expression (2) we consider this wave
peed as a constant before and after the thermomechanical processes.
his is justified due to the very small changes it suffers with variations
f dislocation density, of the order of 1%, much smaller than the
ariations in 𝛽′ [34].

We have characterized 𝛽′ in both the original and annealed sample.
he summary of these measurements is presented in Fig. 7. Before
he thermal treatment there is an initial distribution of dislocations
hat is reflected in an inhomogeneous distribution of 𝛽′. This is clearly
emonstrated with the spatial averages shown in panels (c) and (d).
n the former, the top and bottom line 𝑥-coordinate average values
re, within experimental errors, the same, and larger than those of
he middle line and the top-bottom one. This is most likely due to
he manufacturing processes of the probes, where by stress induced
achining the surfaces end up with more dislocations, resulting in

arger values of 𝛽′ [34]. On the other hand, in (b) and (d) we show
hat after the thermal treatment, the nonlinear parameters collapse
o a constant value, with a mean value ⟨𝛽′⟩AS = (1.0 ± 0.1) × 10−5

V−1, and a dispersion that is three times smaller compared with the
riginal, pre-annealed sample. This is in good agreement with previous
esults [34].

.5. Post bending ultrasonics and numerical results

In order to measure the effect of plastic deformation on the non-
inear acoustic parameter, the SHG method was applied before and
fter the bending test, on the Annealed and Post Bending samples. In
ig. 8 we show the spatial dependence of the nonlinear parameter 𝛽′
s function of the longitudinal coordinate 𝑥 for the PB sample. For
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Fig. 7. Nonlinear acoustic parameter 𝛽′ as function of longitudinal coordinate 𝑥 for the original (a) and annealed (b) samples for the four measurement lines. Spatial averages for
the different lines are shown before and after the annealing procedure in (c) and (d), respectively. A larger dispersion of values is observed for the original sample (a) than for
the annealed one (b), as expected from the latter’s lower dislocation density. In fact, in each measurement line of the original sample the nonlinear parameter covered clearly
separated ranges of values, as shown in (c). The mean value of all the measurements over this sample is ⟨𝛽′⟩OS = 1.0 × 10−5 m V−1 with a dispersion 𝛿𝛽′OS = 0.3 × 10−5 m V−1.
Panel (d) shows that for the annealed sample the nonlinear parameters tend to collapse to a mean value ⟨𝛽′⟩AS = 1.0 × 10−5 m V−1 with a dispersion 𝛿𝛽′AS = 0.1 × 10−5 m V−1.

lthough the mean values of the nonlinear parameter 𝛽′ are the same in the original and annealed samples, the dispersion is three times smaller for the annealed sample, which
s evidence of the homogenization obtained after thermal treatment.
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Fig. 8. (a) Nonlinear acoustic parameter 𝛽′ as function of longitudinal coordinate 𝑥
of the post bending sample for the four measurement lines. Spatial averages for the
different lines are shown in (b). Note the difference in the vertical scales compared to
Fig. 7. The parameter 𝛽′ increases for smaller distances to the central bending point,
for all lines except the middle one, for which it is almost constant. The mean value of
all the measurements over this sample is ⟨𝛽′⟩PBS = 1.1 × 10−5 m V−1 with a dispersion
𝛿𝛽′PBS = 0.2×10−5 m V−1, which reflects a small increment with respect to the annealed
nd original samples. However, the importance here is the spatial sensitivity of 𝛽′, as
t clearly increases above the base values in regions of larger stress.

ll measurement lines except the middle one (ML), it clearly increases
bove the base value 1×10−5 m V−1 as it approaches the central bending
oint. Concomitantly, it tends to this value as |𝑥| increases. The sample
lobal average, for all lines and all 𝑥𝑖 measurement positions, does
ncrease slightly above this value too, as indicated in the figure caption.
7
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4. Discussion

In order to quantify the changes in the acoustic behavior of the
material as a consequence of plastic deformation we consider the
change in the nonlinear parameter 𝛽′, which is calculated as

𝛥𝛽′ = 𝛽′PBS − 𝛽′AS, (6)

here the subfix ’PBS’ stands for the Post Bending sample, and ’AS’, for
he Annealed one. Since we have 𝛥𝛽′ at various positions of the sample,
nd, as a result of the FEM simulation, we have both the von Mises
tress 𝜎𝑉𝑀 and the effective plastic strain 𝜖𝑝𝑒 at those same locations,
t is possible to consider 𝛥𝛽′ as a function of either of the two latter
uantities. This we now do.

In Fig. 9 we present 𝛥𝛽′ obtained experimentally as function of the
on Mises stresses 𝜎𝑉𝑀 (𝑥𝑖) obtained numerically, calculated for each
easurement line, i.e. averaging, along the thickness of the sample, at

ach measurement position 𝑥𝑖. At low stress, the data is consistent with
constant 𝛥𝛽′, very close to zero; a clear deviation is observed above
given stress value, indicated by a vertical dashed line in each panel.
his threshold value is more or less consistent with the aluminium’s
ield stress, although a bit larger than the one of an annealed sample,
hich is of the order of 30 MPa. Indeed, for the same material we
easured 𝜎𝑌 ≈ 30, 44 and 51 MPa for three consecutive tensile tests

n a single probe [30], where the successive increments are due to
ardening by dislocation proliferation. In Fig. 9(a), each measurement
ine data set is identified with a different symbol and color. Most of
he middle line data is below the threshold stress, with 𝛥𝛽′ ≈ 0. This is
xpected because this line is between a tensile zone and a compression
ne, so the local stresses are expected to be very low. The top and
ottom line data are more or less symmetric and deviate clearly from
above a threshold. The top-bottom line data also shows this behavior
ut with a stronger slope, although errors are much larger for this
ata set. The continuous red line is the data fit to all measurements
erged in one data set, of the form 𝛥𝛽′ = 𝛥𝛽′𝑜 for 𝜎VM < 𝜎𝑜 and
𝛽′ = 𝛥𝛽′+𝐴(𝜎 −𝜎 ) for 𝜎 > 𝜎 . Here, for the fitting procedure we
𝑜 VM 𝑜 VM 𝑜
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Fig. 9. Nonlinear parameter difference 𝛥𝛽′ as function of von Mises stress 𝜎VM for all measurements. The continuous lines show the linear fits of the form 𝛥𝛽′ = 𝛥𝛽′𝑜 for 𝜎VM < 𝜎𝑜
and 𝛥𝛽′ = 𝛥𝛽′𝑜 + 𝐴(𝜎VM − 𝜎𝑜) for 𝜎VM > 𝜎𝑜. In (a) the fit is done merging data from all measurement lines. In (b), it is done for the window averaged data presented with solid
red square symbols. The adjusted values are: (a) 𝛥𝛽′𝑜 = (−1.5 ± 0.8) × 10−6 m V−1, 𝐴 = (2.1 ± 1.2) × 10−7 m V−1 MPa−1 and 𝜎𝑜 = 35.8.0 ± 7.6 MPa; (b) 𝛥𝛽′𝑜 = (−1.9 ± 1.2) × 10−6 m
V−1, 𝐴 = (2.4 ± 2.5) × 10−7 m V−1 MPa−1 and 𝜎𝑜 = 37.3 ± 15.8 MPa. The vertical dashed lines are the fitted threshold stresses 𝜎𝑜. The gray shaded regions correspond to the 95%
confidence bounds of these fitted parameters. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. Nonlinear parameter difference 𝛥𝛽′ as function of the effective plastic strain 𝜖𝑝𝑒. The continuous lines show the linear fits of the form 𝛥𝛽′ = 𝛥𝛽′𝑜 for 𝜖𝑝𝑒 < 𝜖𝑜 and
𝛥𝛽′ = 𝛥𝛽′𝑜 + 𝐵(𝜖𝑝𝑒 − 𝜖𝑜) for 𝜖𝑝𝑒 > 𝜖𝑜. In (a) the fit is done merging data from all measurement lines. In (b), it is done for the window averaged data presented with solid red
square symbols. The adjusted values are: (a) 𝛥𝛽′𝑜 = (−1.1 ± 0.6) × 10−6 m V−1, 𝐵 = (6.9 ± 4.2) × 10−4 m V−1 and 𝜖𝑜 = (1.13 ± 0.36) × 10−2; (b) 𝛥𝛽′𝑜 = (−1.0 ± 1.1) × 10−6 m V−1,
𝐵 = (6.2 ± 4.3) × 10−4 m V−1 and 𝜖𝑜 = (1.19 ± 0.45) × 10−2. The vertical dashed lines are the fitted threshold plastic strains 𝜖𝑜. The gray shaded regions correspond to the 95%
confidence bounds of these fitted parameters. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
have used weight factors 𝑤 = 1∕𝑒2, where 𝑒 are the errors for each 𝛥𝛽′.
The black dashed vertical line corresponds to the fitted parameter 𝜎𝑜 =
35.8 MPa. The gray shaded region corresponds to the 95% confidence
bounds of this fitted parameter, which is interpreted as the parameter’s
error bar; in this case ±7.6 MPa. The other parameters are given in the
figure caption. In Fig. 9(b), gray solid circles show the merged data
set and the solid red squares are window averages: the complete 𝜎𝑉𝑀
range is divided in 10 bins and all the data that fall into each bin is
averaged. In this case, the solid red line is the same functional fit but to
this window averaged data set. The fit is also done using weight factors,
as defined previously but with the windowed data standard deviation
as error. In this case, 𝜎𝑜 = 37.3± 15.8 MPa, with its error bar also given
by the fitted 95% confidence bounds. It is larger in this case, by a factor
2.

Here, a natural question is if the von Mises stress is the best
quantifier for the local material state. Is it the best correlator to the
𝛥𝛽′ measurements? In other words, if a transition/bifurcation is to be
expected/evidenced, is 𝜎𝑉𝑀 the appropriate diagnose parameter. There
are two facts that have to be addressed: (1) The threshold value 𝜎 is
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𝑜

about 20% larger than the yield stress of an annealed Al sample; (2) Its
associated error bar for the window average procedure is about 2 times
the one of the fit using all the measurements merged into one data set.

Thus, we propose as an alternative control parameter the plastic
strain 𝜖𝑝𝑒. In Fig. 10 we show 𝛥𝛽′ obtained experimentally as function
of 𝜖𝑝𝑒(𝑥𝑖) obtained numerically, calculated for each measurement line at
each ultrasonic measurement point 𝑥𝑖. A similar behavior is observed: a
constant 𝛥𝛽′ = 𝛥𝛽′𝑜 ≈ 0 is observed for 𝜖𝑝𝑒 < 𝜖𝑜 and 𝛥𝛽′ = 𝛥𝛽′𝑜+𝐵(𝜖𝑝𝑒−𝜖𝑜)
for 𝜖𝑝𝑒 > 𝜖𝑜. However, an importance difference exists: for 𝜖𝑝𝑒 < 𝜖𝑜, most
plastic strain values are concentrated near 0, whereas the von Mises
stress values are more evenly distributed between 0 and 𝜎𝑜. Here, again
all of the middle-line data is concentrated well below the threshold
value (at less than one-third), in contrast to the von Mises stress, and
the top and bottom line data deviate at a given threshold with a similar
slope. Also, again the top-bottom line data deviates with a larger slope
but has larger errors. The fitting procedure also uses weight factors
given by the errors in each case. The threshold plastic strain 𝜖𝑜 is
small, although not 0, as could be naively expected. Its associated error
bars are small, and differ only by a factor of 1.25 between the two
procedures in this case.
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5. Conclusions

In our FEM simulations of the sample subjected to a three-point
bending test, both the von Mises stress and the plastic deformation
are well correlated with standard measurements of the microstructure,
specifically the microstrain obtained by XRD. The incorporation of
the plastic behavior of the material in the COMSOL simulation allows
having a realistic behavior of the deformation inside the sample. The
results discussed in the previous sections show that the measurement
of the acoustic nonlinear parameter 𝛽′ is a reliable measure of plastic
deformation within aluminium, and that this measure can be realized
with space resolution limited only by the transducers size. First of all,
we note that changes in 𝛽′ between annealed and plastically deformed
regions are, broadly speaking, of order 50%. This is a significant
change, not difficult to measure. We also note that a universal indicator,
long used of plastic behavior is the von Mises stress 𝜎VM increasing
beyond a given value. Our measurements indicate that the onset of
plastic behavior, as diagnosed by the behavior of 𝜎VM is accurately
captured by the behavior of the nonlinear acoustic parameter 𝛥𝛽′.
Beyond onset, both quantities are, to a good approximation, linearly
related. We have also found that a more reliable experimental indi-
cator to relate plastic behavior to nonlinear acoustics is the effective
plastic strain 𝜖𝑝𝑒. This is not surprising, since 𝜖𝑝𝑒 is non-vanishing only
within plastically deformed regions. A comparison of the ML values in
Figs. 9(a) and 10(a) illustrates this point. The ML points fall within
the region that separates the ‘‘upper’’ from the ‘‘lower’’ region of the
deformed sample where, because of symmetry (which is, admittedly,
only approximate in the heavily deformed case) the plastic deformation
is smallest. In Fig. 9(a) the ML points are broadly distributed for non-
vanishing values of 𝜎VM, whereas in Fig. 10(a) they are clustered near
the origin. This is also reflected in the fact that it is possible to ascertain
fairly unambiguously that a value of 𝛥𝛽′ > 0.1, say, is indicative of
𝜖𝑝𝑒 > 0.01. A similar relation with 𝜎VM is more uncertain. Also, the
onset of plasticity as determined by 𝜖𝑝𝑒 > 0.01 is independent of the
yield stress.

We have also measured the speed of linear shear waves. As noted
elsewhere [34], this indicator is less sensitive than changes in nonlinear
parameters to changes in microstructure and, indeed, our results show
changes (see Fig. 6) that are less accurate. Something similar can be
said about dislocation measurements using XRD. In addition to its being
an intrusive technique, its accuracy (see Table 1) is also inferior to
nonlinear acoustics.
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